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Supplementary material for “Doubly Debiased Lasso:
High-Dimensional Inference under Hidden Confounding”

In Appendix A, we present the proof of Theorem 1 and important intermediary results for
establishing Theorem 1. In Appendix B, we present the proof of Proposition 1, which relies on
a finite-sample analysis of the factor model. Additional Proofs are presented in Appendix C.

APPENDIX A: INTERMEDIARY RESULTS AND PROOF OF THEOREM 1

In the following, we list three intermediary results in Sections A.1 to A.3 as the key
components of proving our main result Theorem 1 and then provide the proof of Theorem 1 in
Section A.4. We verify the condition (A2) in Section A.5. All our theoretical derivations are
done for the Hidden Confounding Model (2), but they additionally hold more generally for
the perturbed linear model (3).

A.1. Valid spectral transformations. The first intermediary result is on the properties
of the spectral transformation we use. We will show that the limiting distribution in Theorem
1 holds generally for the estimator (10) using any spectral transformations P(j) and Q that
satisfy the following:

(P1) Spectral Transformation Property. P
(j) = U(X�j)S(X�j)U(X�j)| and Q =

U(X)S(X)U(X)| satisfy
1
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Tr[(P(j))4] =
nX

l=1

[Sl,l(X�j)]
4 &m and Tr(Q4) =

nX

l=1

[Sl,l(X)]4 &m.(31)

with m=min{n,p� 1}.

The first requirement means that P(j) and Q need to shrink the leading singular values of X�j

and X to a sufficiently small level, respectively. On the other hand, the second requirement
says that the overall shrinkage of all singular values together is not too big.

For the proof of Theorem 1 and its intermediate results, we extensively use that our spectral
transformations satisfy the property (P1). Therefore, we first need to show that the Trim
transform P

(j) defined in (14) and Q defined in (15) satisfy the property (P1). Since Sl,l = 1
for l > b⇢mc, we have that at least b(1� ⇢)mc diagonal elements of S are equal to 1, which
immediately gives us (31) for Q whenever ⇢ < 1. Similarly, (31) for P

(j) holds for any
⇢j 2 (0,1). However, in order to show the condition (30), we need to better understand the
behaviour of the singular values of the random matrix X .

PROPOSITION 3. Suppose Ei,· 2Rp is a sub-Gaussian random vector and �max(⌃E)
C , for some positive constant C > 0, then with probability larger than 1� exp(�cn),

�q+1
�
1
n
X|X

�
.max{1, p/n},

for some positive constant c > 0.

The above proposition is proved in the Section C.2 by applying the Weyl’s inequality. This
now allows us to conclude that the Trim transform satisfies the property (P1):

COROLLARY 2. Let P(j) and Q be the spectral transformation matrices obtained by
applying the Trim transformation (14) and (15), respectively. Suppose that the conditions of
Proposition 3 hold and that min{⇢,⇢j}� (q+ 1)/min{n,p� 1} and max{⇢,⇢j}< 1. Then
the Trim transformations P(j) and Q satisfy (P1).
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A.2. Approximate sparsity and perturbation size. The essential step of bias correction
is to decouple the correlation between the variable of interest X1,j and other covariates
X1,�j 2 Rp�1. In order to get an informative projection direction P

(j)Zj , one needs to
estimate the best linear approximation vector � = [E(X1,�jX

|
1,�j

)]�1E(X1,�jX1,j) 2Rp�1

well. Recall that the results for the standard Debiased Lasso [56] are based on the fact that the
sparsity of the precision matrix ⌃�1

X
gives sparsity of �, thus justifying the estimation accuracy

of the Lasso regression of X1,j on X1,�j . However, even though the assumption (A1) ensures
the sparsity of the precision matrix of the unconfounded part E, � will not be sparse, since the
confounding variables H introduce additional correlations between the covariates X .

Recall the definitions

⌘i,j =Xi,j �X|
i,�j

� and ⌫i,j =Ei,j �E|
i,�j

�E ,

where �E = [E(E1,�jE
|
1,�j

)]�1E(E1,�jE1,j).
The following Lemma 1 shows that in the presence of confounding variables, the vector �

can be decomposed into a main sparse component �E and an additional small perturbation
vector �A. The proof of the following Lemma is presented in Section C.3.

LEMMA 1. Suppose that the conditions (A1) and (A2) hold, then the vector � =
[E(X1,�jX

|
1,�j

)]�1E(X1,�jX1,j) defined as the minimizer of E(X1,j �X|
1,�j

�0)2, can be
decomposed as � = �E + �A, where �E = [E(E1,�jE

|
1,�j

)]�1EE1,jE1,�j is a sparse vector
with at most s non-zero components and the approximation error �A satisfies

(32) k�Ak2  max
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E
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p
q(log p)1/4
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.

Furthermore, the difference �i,j = ⌘i,j � ⌫i,j satisfies

(33) Var(�i,j).
k j � �j�Ek22
1 + �2q( �j)

. q(log p)1/2

1 + �2q( �j)
.

The main component �E is fully determined by the covariance structure of Ei,·. From the
block matrix inverse formula, we get that �E is proportional to (⌦E)j,�j 2Rp�1 and therefore
sparse with at most s non-zero components. Since the additional component �A converges to
zero as in (32), the regression vector � is approximately sparse.

In a similar fashion, we will show that the perturbation b in (3), which is induced by the
confounding variables, is of a small order of magnitude as well.

LEMMA 2. Suppose that the conditions (A1) and (A2) hold, then

(34) |bj |.
q(log p)1/2

1 + �2q( )
, kbk2 .

p
q(log p)1/4

�q( )
,

and

(35)
���2✏ � �2e

��=
���|

�
Iq � ⌃

�1
X
 |��

��. q(log p)1/2

1 + �2q( )
.

The above lemma also shows that the variance of the error ✏i in (3) is close to that of the
random error ei. The proof of the above lemma is presented in Section C.4.
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A.3. Error rates of b�init and b�. In order to show the asymptotic normality of the
proposed Doubly Debiased Lasso estimator (10), we need that the estimators b�init and b�
estimate the target values � and � well. In the following proposition, we show that the estimator
b� described in (9) accurately estimates � with a high probability. The proof of Proposition 4 is
presented in Section C.5.

PROPOSITION 4. Suppose that the conditions (A1)� (A4) hold. If the spectral trans-
formation P

(j) satisfies (P1) and the tuning parameter �j in (9) is chosen as �j �
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where W 2Rp⇥p as a diagonal matrix with diagonal entries as Wl,l = kP
(j)X·,lk2/

p
n for

1 l p, ⌧⇤ > 0 is the lower bound for the restricted eigenvalue defined in (22) and M is the
sub-Gaussian norm for components of Xi,., as defined in Assumption (A3).

Throughout our analysis, we shall choose �j as

(39) �j ⇣A�j

r
log p

n
+

s
q log p

1 + �2q( �j)
,

though Proposition 4 shows that the results also hold for a larger �j . Furthermore, we combine
(30) and (32) and establish

(40)
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In addition, we show an analogous result that the initial spectral deconfounding estimator
b�init proposed in (16) accurately estimates � with a high probability:

PROPOSITION 5. Suppose that the conditions (A1)� (A4) hold. If the spectral transfor-

mation Q satisfies (P1) and the tuning parameter � in (16) is chosen as �� A�e

q
log p
n

+
q

q log p
1+�2

q( )
, for some positive constant A > 0, then with probability larger than 1 � e ·

p1�c(A/C1)2 � exp(�cn)� (log p)�1/2 for some positive constant c > 0, the estimator b�init
proposed in (16) satisfies
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(43)
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where fW 2 Rp⇥p as a diagonal matrix with diagonal entries as fWl,l = kQX·,lk2/
p
n for

1 l p, ⌧⇤ > 0 is the lower bound for the restricted eigenvalue defined in (21) and M is the
sub-Gaussian norm for components of Xi,., as defined in Assumption (A3)..

This extends the results in [12], where only the rate of convergence of kb�init � �k1 has
been established, but not of kb�init � �k2 and 1p

n
kQX(b�init � �)k2 and furthermore, the

assumption (A2) is weaker than the assumption �q( )&
p
p required in Theorem 1 of [12].

The proof of Proposition 5 is presented in Section C.6. We shall choose
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r
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,

though Proposition 5 shows that the results also hold for a larger �. Furthermore, similar to
(40), we combine (30) and (34) and establish
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�2q( )
.

As a remark, if we further assume the error ✏i in the model (3) to be independent of Xi,·, then
we can take �=A�✏

p
log p/n and establish a slightly better rate of convergence.

A.4. Proof of Theorem 1. We write

V =
Z|
j
(P(j))4Zj · �2e

(Z|
j
(P(j))2Xj)2
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p
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q
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j
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.

Note that the following limiting result (50) shows that Z|
j
(P(j))2Xj converges to a positive

value in probability. From the equation (11), we have the following expression
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We decompose
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with �i =  |Hi,· � b|Xi,· for 1 i n. Since ei is Gaussian and independent of Xi,· and
Zj is a function of X , we establish
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By Cauchy inequality, we have
�����

1
p
V

(P(j)Zj)|P(j)�

(P(j)Zj)|P(j)Xj

�����
1

�2e
k�k2.

Combined with (47), we establish that, with probability larger than 1� (log p)�1/2,
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�����
1

p
V

(P(j)Zj)|P(j)�
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If �2q( )�max{1, qn log p}, we combine (46) and (48) and establish

(49)
1

p
V

(P(j)Zj)|P(j)✏

(P(j)Zj)|P(j)Xj

d
!N(0,1).

We establish in the following lemma that Bb and B� converges to 0 in probability under
certain model conditions. The proof of this lemma is presented in Section C.7. The proof
relies on our established intermediary results: Corollary 2, Lemmas 1 and 2, and Propositions
4 and 5.

LEMMA 3. Suppose that the conditions of Theorem 1 hold. Then we have

(50)
(P(j)Zj)|P(j)Xj

Tr[(P(j))2]�2
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p
! 1
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Z|
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(P(j))4Zj

Tr[(P(j))4]�2
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! 1

(52) B�

p
! 0 Bb

p
! 0.

By the decomposition (45) together with (49) and (52), we establish the limiting distribution
in (24). The asymptotic expression of the variance V in (25) follows from (50) and (51).

A.5. Verification of Assumption (A2). In the following, we verify the condition (A2)
for a general class of models, whose proof can be found in Section C.8.

LEMMA 4. Suppose that { ·,l}1lp are generated as i.i.d. q-dimensional sub-Gaussian
random vectors with mean zero and covariance⌃ 2Rq⇥q . If q⌧ p, �max(⌃ )/�min(⌃ )
C and k�k1/�min(⌃ )C for some positive constant C > 0, then with probability larger
than 1� (log p)2c, we have

(53) �q( )� �q( �j)&
p
p
p
�min(⌃ )

(54) max{k (⌦E)·,jk2,k jk2,k �j(⌦E)�j,jk2,k�k2}.
p
�max(⌃ ) ·

p
q(log p)c,

where c > 0 is a positive constant.

The conclusion of Lemma 4 can be generalized to hold if a fixed proportion of the p
columns of  are i.i.d. sub-Gaussian in Rq . This generalized result is stated in the following
lemma, whose proof is presented in Section C.9:
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LEMMA 5. Suppose that there exists a set A ✓ {1,2, . . . , p} such that { ·,l}l2A are
generated as i.i.d sub-Gaussian random vector with mean zero and covariance ⌃ 2Rq⇥q

and { ·,l}l2Ac are generated as independent q-dimensional sub-Gaussian random vectors
with sub-Gaussian norm C1. If max{C1,�max(⌃ )}/�min(⌃ )C, k k1/�min(⌃ )C
and max{C1,�max(⌃ )}C for some positive constant C > 0 and |A| satisfies

(55) |A|� q and |A|�max

⇢r
qp

n
(log p)3/4,

p
qn log p, q3/2(log p)3/4

�
,

then the assumption (A2) holds with probability larger than 1� (log p)2c.

APPENDIX B: PROOF OF PROPOSITION 1

We express the hidden confounding model as

(56) Xn⇥p =Dn⇥p +En⇥p with Dn⇥p =Hn⇥q q⇥p.

For a given q, a natural way to estimate  and H is to solve the optimization problem
argminH2Rn⇥q, 2Rq⇥p kX �H k2

F
, where k · kF denotes the matrix Frobenius norm. Since

the solution of this optimization problem is not unique, we introduce an additional constraint
H|H/n= Iq for the parameter identification. Then the minimizer is defined as

( eH, e ) = argmin
H2Rn⇥q, 2Rq⇥p,H|H/n=Iq

kX �H k2F

= argmin
H2Rn⇥q, 2Rq⇥p,H|H/n=Iq

�2Tr( |H|X) + nTr( | ).

We compute the derivative of �2Tr( |H|X) + nTr( | ) with respect to  and set it to be
zero. Then we obtain the solution

(57)
1

n
eH|X = e with eH = argmax

H2Rn⇥q,H|H/n=Iq

Tr(H|XX|H).

That is, the columns of eH 2Rn⇥q are
p
n times the first q eigenvectors, corresponding to the

top q eigenvalues of XX|
2Rn⇥n. Then the PCA adjusted covariates are defined as
eXPCA =X � eD with eD = eH e .

That is, we remove from X the eigen-decomposition corresponding to the top q eigenvalues,
which is denoted as eD. Define R=D� eD. Then we have eXPCA =R+E and
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We further have
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In the following, we shall control the three terms on the right-hand-side of (58).
Note that Theorem 1.6 in [66] (with k0 in this theorem taken as CM ) implies that, if

n&M2k log p

n
,
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then with probability larger than 1� p�c for some positive constant c > 0,

max
k!T ck1CM ·k!T k1,k!k2=1

������

s
!| 1

n
E|E!

!|⌃E!
� 1

������
 0.1.

That is, there exists a positive constant C 0 > 0 such that

(59) min
k!T ck1CM ·k!T k1,k!k2=1
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n
E|E! � 0.9 · �min(⌃E),
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R|R!. Fix T ✓ [p] with |T | k. Then we have
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By combining (60) and (61), we establish
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By the decomposition in (58) and the bounds in (59), (61) and (62), we establish
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where C is a positive constant independent of n and p. If

(63) n&M2
·
k log p

n
and M ·

p

kkRk1 ! 0,

we establish that, for a sufficiently large n, there exists a small positive constant 0< c < 0.9
independent of n and p such that
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By the Weyl’s inequality for singular values,

|�l(X)� �l(D)|= |�l(D+E)� �l(D)| kEk2 for 1 l p.

We then apply Theorem 5.39 of [57] and establish that, with probability larger than 1� p�c

for some positive constant c > 0,

|�l(X)� �l(D)| kEk2 .
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p
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Since D is of rank q, then �q+1(D) = 0 and hence
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This leads to
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for any ! 2Rp and hence with probability larger than 1� p�c,
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To complete the proof, we shall apply the following lemma to verify the dimension condition
(63). The proof of the following lemma is presented at Section B.2.

LEMMA 6. Suppose that assumptions (A1) and (A3) hold, Hi,· is a sub-Gaussian ran-
dom vector, q + log p .p

n, k = k�k0 satisfies kq2 log p logn/n! 0. The loading matrix
 2Rq⇥p satisfies max1iq,1jp | i,j |.

p
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constant C > 0 and (23). Then with probability larger than 1� p�c
� exp(�cn) for some

positive constant c > 0,

(65)

kRk1 .
r

q log p

n

p
q log(qn) +

q
9
2 (logN)

7
2

min{n,p}
·

✓
p

�2q( )

◆2p
q log(qp)

+

 r
log p

n
+

q logN
p
p

!
·

p

�2q( )

p
q log(qn).
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Hence the dimension condition
M2

· kq2 log p logn

n
! 0

together with (23) implies (63).
Furthermore, in Section B.1, we provide theoretical justification on the lower bound

�b⇢mc(
1
n
XX|).

B.1. Lower bounds for �b⇢mc(
1
nXX|).

LEMMA 7. Suppose that assumptions (A1) and (A3) hold and Hi,· is a sub-Gaussian
random vector. With probability larger than 1� p�c for some positive constant c > 0, if either
of the following two assumptions hold for Zi,· =⌃

�1/2
X

Xi,·:

1. p/n! c⇤ 2 [0,1) and 1
p

⇣
Z|
i,·AZi,· �Tr(A)

⌘
p
! 0 as p!1 for all sequences of com-

plex matrices A 2Rp⇥p with uniformly bounded spectral norms kAk2.
2. p/n!1 and the entries of Zi,· are independent.

then �b⇢mc(
1
n
XX|)&max{1, p/n} for n sufficiently large.

The condition 1
p

⇣
Z|
i,·AZi,· �Tr(A)

⌘
p
! 0 is implied by the forth order moment condition:

for 1 i n,

(66) E[Zi,j1Zi,j2Zi,j3Zi,j4 ] = 0 for all j1 /2 {j2, j3, j4}.

The moment condition (66) is substantially weaker than assuming independent entries of Zi,·.
Both conditions 1. and 2. are imposed only for technical reasons so that we can directly apply
the lower bounds for the median (or smallest) singular values established in [63, 57, 51].

We now apply (66) to establish 1
p

⇣
Z|
i,·AZi,· �Tr(A)

⌘
p
! 0. Note that

E
���Z|

i,·AZi,· �Tr(A)
���
2
= E

���Z|
i,·AZi,·

���
2
� |Tr(A)|2



X

1j 6=lp

EZ2
i,jZ

2
i,l
|Aj,l|

2 +
X

1j 6=lp

EZ2
i,jZ

2
i,l
|Aj,l||Al,j |

.
X

1j 6=lp

|Aj,l|
2 . p

where the first equality uses that E[ZT

i,.
AZi.] = Tr(A), the first inequality follows from (66)

and the last inequality follows from the bounded spectrum norm condition. Then we apply
Markov’s inequality to establish 1

p

⇣
Z|
i,·AZi,· �Tr(A)

⌘
p
! 0 as p!1.

We now present the proof of Lemma 7. With Z =X⌃
� 1

2

X
, we have

(67) �min (ZZ|) = �min
�
X⌃�1

X
X|�


1

�min(⌃X)
�min(XX|).

Note that Zi,· = ⌃
� 1

2

X
 |Hi· +⌃

� 1
2

X
Ei·. For any v 2 Rp and kvk2  1, the random variable

v|Zi,· has sub-Gaussian norm upper bounded by C
⇣
kv|⌃

� 1
2

X
 |

k2 + k⌃
� 1

2

X
vk2

⌘
for some

positive constant C > 0. By (134), we show that v|Zi,· has a bounded sub-Gaussian norm
and hence Zi,· is sub-Gaussian.
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We now establish the lower bound for �b⇢mc(
1
n
XX|) by considering two cases.

Case 1: p/n! c⇤ 2 (0,1). For any set B ✓ R, define µp(B) = 1
p

P
p

i=1 1(�j 2 B) where
{�j}1jp are eigenvalues of 1

n
ZZ|. Let µc⇤ denote the Marchenko Pastur law: for any set

B ✓R,

µc⇤(B) =

8
<

:
(1� 1/c⇤) · 1(0 2B) +

R
b

a

p
(b�t)(t�a)
2⇡c⇤t

· 1(t 2B)dt if c⇤ > 1
R
b

a

p
(b�t)(t�a)
2⇡c⇤t

· 1(t 2B)dt if 0< c⇤  1

where a= (1�
p
c⇤)2 and b= (1+

p
c⇤)2.

In the following, we shall apply Theorem 1 of [63] and establish

(68) µp

d
! µc⇤ almost surely.

Note that Theorem 1 of [63] holds under the condition that
1

p

⇣
Z|
i,·AZi,· �Tr(A)

⌘
p
! 0

as p!1 for any sequence of complex matrices A 2Rp⇥p with uniformly bounded spectral
norms kAk2.

We now apply (68). When c⇤ 6= 1, (68) implies that

(69) lim inf
n!1

�min

✓
1

n
ZZ|

◆
� (1�

p
c⇤)

2 almost surely.

When c⇤ = 1, we need to calculate the median (or more general quantiles) of the distribution

with the density function
p

(4�t)t
2⇡t . For ⇢= 1/2, the median is within the range between 0.65

and 0.66, which, together with (68), lead to

(70) lim inf
n!1

�bm/2c

✓
1

n
ZZ|

◆
� 0.65 almost surely.

We combine (67), (69) and (70) and show that there exists some constant c > 0 such that

(71) lim inf
n!1

�bm/2c

✓
1

n
XX|

◆
� c�min(⌃X) almost surely.

Case 2: p/n�C for some positive constant C > 0 and the entries of Zi,· are independent.
Theorem 5.39 of [57] implies that with probability larger than 1�p�c, �m(Z)�

p
p�C

p
n�

p
log p, where C is the constant defined in [57] and independent of n and p. Combined with

(67), we establish that, with probability larger than 1� p�c,

(72) �b⇢mc(
1

n
XX|)� �m(

1

n
XX|)& p

n
�min(⌃X).

B.2. Proof of Lemma 6. We prove the lemma through a finite-sample analysis of the
factor model (56). The proof idea follows from that in [1] and [2], who establish the limiting
distribution for any single entry of the matrix R= eD�M ; see Theorem 3 in [1] for details. In
our following proof, the main difference is to establish the rate of convergence of kRk1 using
finite-sample concentration bounds. We also relax the strong factor assumption �q( )⇣

p
p

in [2] to the weaker condition (23).
Define b⇤2

2 Rq⇥q to be the diagonal matrix consisting of the top q eigenvalues of the
matrix 1

np
XX|. Define

(73) O = (  |/p)(H| eH/n)b⇤�2
2Rq⇥q.
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Define N =max{n,p}. Define the events

G1 =

(
k
1

n

nX

i=1

Hi,·H
|
i,· � Ik2 .

r
q+ log p

n

)

G2 =

⇢
max
1in

kHi,·k2 .
p

q log(nq)

�

G3 =

(
max
1tn

k |Ht,·/pk2 .
p
q
p

log(pq)
p

log(np)
p
p

)

G4 =

⇢
max
1tn

max
1jq

1

k j,·k2

��� |
j,·Et,·

���.
p

logN

�

G5 =

⇢
max
1in

E|
i,·Ei,·/p. log(np)

�

G6 =

(
max

1t 6=in

���E|
i,·Et,·/p

���.
p
log p

p
log(np)

p
p

)

G7 =

(
kH|E |

k2

np
=

�����
1

n

nX

i=1

Hi·
1

p
E|

i· 
|
�����
2

.
r

q+ log p

n
·
�max( )

p

)

G8 =
�
kHk2 .

p
n,kEk2 .

p
n+

p
p
 

G9 =

(
kH|Ek2

np
=

�����
1

n

nX

i=1

Hi·
1

p
E|

i·

�����
2

. 1

p
+

1
p
np

)

G10 =

⇢
c
�q( )
p
p

 �min(b⇤) �1(b⇤)C
�1( )
p
p

, �max(O)C

�

G11 =

(
max

1j,lp

�����
1

n

nX

t=1

Et,jEt,l � (⌃E)j,l

�����.
r

log p

n

)

G12 =

(
max

1jq,1lp

�����
1

n

nX

t=1

Ht,jEt,l

�����.
r

log p

n

)

where C > 0 and c > 0 are some positive constants. Define

G = \
12
j=1Gj .

On the event G4, we have

(74) max
1tn

k
1

p
 Et,·k2 .

p
q · max

1jq

k j,·k2
p
logN

p
. qlogN

p
p

.

The following lemma shows that the event G happens with a high probability, whose proof
can be found in Section B.5.

LEMMA 8. Suppose that the conditions of Lemma 6 hold, then we have

(75) P(G)� 1� p�c
� exp(�cn)

for some positive constant c > 0.
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The following lemma characterizes the accuracy of the loading estimation, which can be
viewed as the finite sample version of Theorem 1 in [2] and Theorem 1 in [1]. The proof of
the following lemma can be found in Section B.3.

LEMMA 9. On the event G,

(76) max
1tn

k eHt,· �O
|Ht,·k2 .

p

�2q( )

 
q2(logN)3/2

p
p

+

r
q logN

n

!

with N = max{n,p}. Furthermore, with probability larger than 1 � n�c
� p�c for some

constant c > 0,

(77)

�����
eHt,· �O

|Ht,· � b⇤�2 1

n

nX

i=1

Hi,·
1

p
H|

i,· Et,·

�����.
✓

p

�2q( )

◆2 q
7
2 (logN)3

min{n,p}

and
(78)�����
b⇤�2 1

n

nX

i=1

Hi,·
1

p
H|

i,· Et,·

�����
2

 kb⇤�2
k2 · k

1

n

nX

i=1

Hi,·H
|
i,·k2 · k

1

p
 Et,·k2 .

p

�2q( )
·
qlogN
p
p

.

The following lemma characterizes the accuracy of the loading estimation, which can be
viewed as the finite sample version of Theorem 2 in [1]. The proof of the following lemma
can be found in Section B.4.

LEMMA 10. On the event G,
(79)

max
1lp

���e ·,l �O
�1 ·,l

���. q
9
2 (logN)

7
2

min{n,p}
·

✓
p

�2q( )

◆2

+

 r
log p

n
+

1
p
p

!
·

p

�2q( )
+

r
q log p

n
.

For 1 t n and 1 l p, we have the the following decomposition for eDt,l �Mt,l

(80)
eH|
t,·
e ·,l �H|

t,· ·,l

= eH|
t,·
e ·,l � (O|Ht,·)

|
O

�1 ·,l

= ( eHt,· �O
|Ht,·)

|e ·,l + (O|Ht,·)
|(e ·,l �O

�1 ·,l)

= ( eHt,· �O
|Ht,·)

|
O

�1 ·,l + (O|Ht,·)
|(e ·,l �O

�1 ·,l) + ( eHt,· �O
|Ht,·)

|(e ·,l �O
�1 ·,l).

On the event G2 \ G10, we have

kO
�1 ·,lk2 .

p
q log(qp) and kO

|Ht,·k2 .
p

q log(nq).

Note that

kRk1 = max
1tn,1lp

|k eH|
t,·
e ·,l �H|

t,· ·,lk2.

By applying Lemmas 9 and 10 to the decomposition (80), we establish that (65) holds on the
event G.
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B.3. Proof of Lemma 9. Recall that b⇤2
2Rq⇥q denotes the diagonal matrix consisting

of the top q eigenvalues of the matrix 1
np
XX|. By the definition of eH in (57), we have

eH =
1

np
XX| eHb⇤�2.

With the above expression, we establish the following decomposition of eHt,· �O
|Ht,· 2Rq

for 1 t n,

(81)

eHt,· �O
|Ht,· =

1

np
b⇤�2 eH|XXt,· �O

|Ht,·

=
1

np
b⇤�2 eH|(H +E)( |Ht,· +Et,·)�O

|Ht,·

=
1

np
b⇤�2 eH|H Et,· +

1

np
b⇤�2 eH|E |Ht,· +

1

np
b⇤�2 eH|EEt,·

= b⇤�2

 
1

n

nX

i=1

eHi,·
1

p
H|

i,· Et,· +
1

n

nX

i=1

eHi,·
1

p
E|

i,· 
|Ht,· +

1

n

nX

i=1

eHi,·
1

p
E|

i,·Et,·

!
.

Proof of (76). By (81), we have
(82)
k eHt,· �O

|Ht,·k2

kb⇤�2
k2

 
k
1

n

nX

i=1

eHi,·
1

p
H|

i,· Et,·k2 + k
1

n

nX

i=1

eHi,·
1

p
E|

i,· 
|Ht,·k2 + k

1

n

nX

i=1

eHi,·
1

p
E|

i,·Et,·k2

!
.

We upper bound the three terms on the right hand side of (82) as

(83)

k
1

n

nX

i=1

eHi,·
1

p
H|

i,· Et,·k2 
1

n

nX

i=1

k eHi,·k2|
1

p
H|

i,· Et,·|



vuut 1

n

nX

i=1

k eHi,·k22 ·

vuut 1

n

nX

i=1

|
1

p
H|

i,· Et,·|2;

(84)

k
1

n

nX

i=1

eHi,·
1

p
E|

i,· 
|Ht,·k2 

1

n

nX

i=1

k eHi,·k2|
1

p
E|

i,· Ht,·|



vuut 1

n

nX

i=1

k eHi,·k22 ·

vuut 1

n

nX

i=1

|
1

p
E|

i,· Ht,·|2;

(85)

k
1

n

nX

i=1

eHi,·
1

p
E|

i,·Et,·k2 
1

n

nX

i=1

k eHi,·k2|
1

p
E|

i,·Et,·|



vuut 1

n

nX

i=1

k eHi,·k22 ·

vuut 1

n

nX

i=1

|
1

p
E|

i,·Et,·|2.

Note that

max
1tn

vuut 1

n

nX

i=1

|
1

p
H|

i,· Et,·|2  max
1in

kHi,·k2 max
1tn

k Et,·/pk2,
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max
1tn

vuut 1

n

nX

i=1

|
1

p
E|

i,· Ht,·|2  max
1tn

kHt,·k2 max
1in

k Ei,·/pk2.

Together with (74), we establish that, on the event G2,

max

8
<

:max
1tn

vuut 1

n

nX

i=1

|
1

p
H|

i,· Et,·|2, max
1tn

vuut 1

n

nX

i=1

|
1

p
E|

i,· Ht,·|2

9
=

;. q
3
2 (logN)

3
2

p
p

.

Note that eH| eH/n= I implies 1
n

P
n

i=1 k
eHi,·k

2
2 = q. Combined with (83) and (84), we estab-

lish that, on the event G,

(86) max

(
k
1

n

nX

i=1

eHi,·
1

p
H|

i,· Et,·k2k
1

n
,

nX

i=1

eHi,·
1

p
E|

i,· 
|Ht,·k2

)
. q2(logN)

3
2

p
p

.

Note that vuut 1

n

nX

i=1

|
1

p
E|

i,·Et,·|2 =

s
1

n

X

t 6=i

|
1

p
E|

i,·Et,·|2 +
1

n
|
1

p
E|

t,·Et,·|2.

On the event G5 \ G6, we have

max
1tn

vuut 1

n

nX

i=1

|
1

p
E|

i,·Et,·|2 .
s

qlog p log(np)

p
+

log(np)

n
.

Combined with (85), we establish

(87) k
1

n

nX

i=1

eHi,·
1

p
E|

i,·Et,·k2 .
q logN
p
p

+

r
q logN

n
.

Together with (86), (87) and the definition of G10, we apply the decomposition (82) and
establish (76).
Proof of (77). We shall establish the bound by applying (81) and the bound (76). Note the
following three decompositions

1

n

nX

i=1

eHi,·
1

p
H|

i,· Et,· =
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
H|

i,· Et,· +O
| 1
n

nX

i=1

Hi,·
1

p
H|

i,· Et,·

1

n

nX

i=1

eHi,·
1

p
E|

i,· 
|Ht,· =

1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,· 
|Ht,· +O

| 1
n

nX

i=1

Hi,·
1

p
E|

i,· 
|Ht,·

1

n

nX

i=1

eHi,·
1

p
E|

i,·Et,· =
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,·Et,· +O
| 1
n

nX

i=1

Hi,·
1

p
E|

i,·Et,·

By applying (81) and the above three decompositions, we establish
(88)

b⇤2(
1

np
b⇤�2 eH|XXt,· �O

|Ht,· � b⇤�2 1

n

nX

i=1

Hi,·
1

p
H|

i,· Et,·)

=
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
H|

i,· Et,· +
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,· 
|Ht,·

+O
| 1
n

nX

i=1

Hi,·
1

p
E|

i,· 
|Ht,· +

1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,·Et,· +O
| 1
n

nX

i=1

Hi,·
1

p
E|

i,·Et,·
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Note that
�����
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
H|

i,· Et,·

�����

vuut 1

n

nX

i=1

( eHi,· �O|Hi,·)2

vuut 1

n

nX

i=1

(H|
i,· Et,·/p)2

and
�����
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,· 
|Ht,·

�����

vuut 1

n

nX

i=1

( eHi,· �O|Hi,·)2

vuut 1

n

nX

i=1

(E|
i,· 

|Ht,·/p)2.

On the event G, we have (74) and then

max
1tn

max
1in

���H|
i,· Et,·/p

��� max
1in

kHi,·k2 max
1tn

k Et,·/pk2 .
(q logN)3/2

p
p

.

With the above three inequalities, we apply (76) and establish

(89)

�����
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
H|

i,· Et,·

�����+

�����
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,· 
|Ht,·

�����

. p

�2q( )

q
7
2 (logN)3

p
p
p

min{n,p}

Note that

1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,·Et,· 

vuut 1

n

nX

i=1

( eHi,· �O|Hi,·)2

vuut 1

n

nX

i=1

(E|
i,·Et,·/p)2.

On the event G, we apply (76) and (87) and establish

(90)

�����
1

n

nX

i=1

( eHi,· �O
|Hi,·)

1

p
E|

i,·Et,·

�����
p

�2q( )
·
q3(logN)

5
2

min{n,p}
.

We now turn to the upper bound for O
| 1
n

P
n

i=1Hi,·
1
p
E|

i,· 
|Ht,· and first consider the

setting i 6= t. Note that

(91)

������
1

n

X

i 6=t

Hi,·
1

p
E|

i,· 
|Ht,·

������
2


p
q max
1jq

������
1

n

X

i 6=t

Hi,j

1

p
E|

i,· 
|Ht,·

������
.

Conditioning on Ht,·, the random variable Hi,j
1
p
E|

i,· 
|Ht,· is of zero mean and sub-

exponential with sub-exponential norm upper bounded by Ck |Ht,·/pk2. By Proposition
5.16 of [57], we establish

P

0

@max
1jq

������
1

n

X

i 6=t

Hi,j

1

p
E|

i,· 
|Ht,·

������
�Ck |Ht,·/pk2

r
logn

n
|Ht,·

1

A n�c.

Together with the definition of the event G3, we establish that, with probability larger than
(1� n�c) · P(G3),
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On the event G2 \ G4, we apply (74) and establish that for any 1 t n,
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n
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p
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����
2


1

n
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2
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p
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|
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(q logN)2
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Together with (92), we establish

(93)
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p
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(q logN)2
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We now consider the upper bound for O| 1
n

P
n

i=1Hi,·
1
p
E|

i,·Et,· and consider the setting
i 6= t. Note that

(94)
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p
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p
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2

Conditioning on Et,·, the random variable Hi,j
1
p
E|

i,·Et,· is of zero mean and sub-exponential
with sub-exponential norm upper bounded by CkEt,·/pk2. By Proposition 5.16 of [57], we
establish
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Together with the definition of G5, we show that, with probability larger than (1�n�c) ·P(G5),
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On the event G2 \ G5, we have
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p
E|

t,·Et,·

����
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Together with (96), we establish

(97)
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.
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n

On the event G, we apply the decomposition (88) with the error bounds (89),(90),(93), (97)
and then establish (77). The upper bound in (78) follows from the definition of G2 and (74).

B.4. Proof of Lemma 10. By the definition of e in (57), we now control the estimation
error of e ·,l =

1
n
eH|X·,l 2Rq. We start with the following decomposition,

(98)

e ·,l �O
�1 ·,l =
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n
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=
1

n
eH|(H ·,l +E·,l)�O
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�1) ·,l +
1

n
O
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n
( eH �HO)|E·,l.
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To establish (79), we control all three terms on the right-hand-side of (98).
Control of 1

n
eH|(H � eHO

�1) ·,l. Note that

(99)
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On the event G, it follows from (76) that
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Since

1

n
O

|H|(HO� eH)O�1 ·,l =
1

n
O

|
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Ht,·(O
|Ht,· � eHt,·)

|
O

�1 ·,l,

then on the event G, we have
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In the following, we shall control

k
1
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It follows from (81) that b⇤2 1
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P
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|
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On the event G, we apply (76) and (74) and establish
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On the event G, we have
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Then on the event G, we have established that
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Together with (100) and (101), we have
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Control of 1
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O

|H|E·,l Note that
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On the event G10 \ G12, we have
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Control of 1
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( eH �HO)|E·,l. It follows from (81) that the term b⇤2 1
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decomposed as
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On the event G11 \ G12, together with the fact that �max(⌃E)C for some positive constant
C > 0, we apply (103) and (104) and establish
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By the above bounds, we apply the decomposition (107) and establish
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A combination of (105), (108) and (106) leads to (79).

B.5. Proof of Lemma 8. Control of G1 \ G2 \ G3. By the equation (5.23) of [57], with
probability larger than 1� p�c, the event G1 holds. Note that

max
1in

kHi,·k2 
p
q max
1in,1jq

|Hi,j | and max
1tn

k |Ht,·/pk2 
1
p
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��� |
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Since {Hi,·}1in are i.i.d. sub-Gaussian vectors, with probability larger than 1� (p)�c,
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q
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Hence, we establish

P (G1 \ G2 \ G3)� 1� p�c.

Control of G4 \ G5 \ G6. For any 1 j  q, 1
k j,·k2

 |
j,·Et,· is sub-Gaussian random variable

and this leads to P(G4)� 1�p�c. We also have P
⇣
maxt,j |Et,j |.

p
log(np)

⌘
� 1�(np)�c,

which leads to P(G5)� 1� p�c.
We fix 1 t n and consider i 6= t. Conditioning on Et,·, the random variable E|

i,·Et,·/p
is a zero-mean sub-Gaussian random variable with sub-Gaussian norm kEt,·k2/p. On the
event G5, we establish
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✓
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|E|
i,·Et,·/p|.

p
log pkEt,·k2/p |Et,·

◆
� 1� p�c.
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Note that
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where µ(Et,·) denotes the measure of Et,·. Combined with (109), we establish that, for a given
1 t n,

P
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where c > 1 is some positive constant. By applying another union bound, we establish
P(G6)� 1� p�(c�1). Hence, we establish

P (G4 \ G5 \ G6)� 1� p�c.

Control of G7. For any vector u 2Rq and v 2Rq, we have
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We shall use Nq to denote the ✏-net of the unit ball in Rq; see the definition of ✏-net in
Definition 5.1 in [57]. Taking the union bound over all vectors u, v 2Nq, we have
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where c > 0 is some positive constant. We choose t2 = C log(|Nq|
2
· p) 

p
n for some

positive constant C > 0 such that |Nq|
2 exp(�ct2) p�c

0 for some positive constant c0 > 0.
By Lemmas 5.2 and 5.3 of [57], we take |Nq|

2 = C2q and apply (111) to establish that
P(G7)� 1� p�c.
Control of G8 \ G9. By Theorem 5.39 of [57], we establish that P(G8)� 1�exp(�cmin{n,p}).
Since kH|Ek2  kHk2kEk2, on the event G8, the event G9 holds. That is, we establish that
P(G8 \ G9)� 1� exp(�cmin{n,p}).
Control of G10. We start with the decomposition
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Note that the top q eigenvalues of 1
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A combination of (112) and (114) leads to
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By (23), there exists positive constants C � c > 0 such that

c
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By the definition of O in (73), we have
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� exp(�cn),

kb⇤�2
k2 .

p
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Applying the above inequality together with the fact that k  |/pk2  �21( )/p, k eHk2 =
p
n

and �1( )/�q( )C, we establish that, with probability larger than 1� p�c
� exp(�cn),

kOk2 C 0,

for some positive constant C 0 > 0. That is, P(G10)� 1� p�c
� exp(�cn).

Control of G11 \ G12. The proofs follows from the fact that Et,jEt,l � (⌃E)j,l and Ht,jEt,l

are zero mean sub-exponential random variable. We apply Corollary 5.17 of [57] and the
union bound to establish P(G11 \ G12)� 1� p�c for some positive constant c > 0.
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APPENDIX C: ADDITIONAL PROOFS

C.1. Proof of Proposition 2. We note that

Qy�QX b�init =Qe+Q�+QX(� � b�init) +QXb,

where �i =  |Hi,· � b|Xi,· for 1 i n.
Then we have
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where the inequality follows from Tr(Q2) ⇣ m ⇣ n andkQ2�k2  k�k2. Together with
(117), we establish that, with probability larger than 1� (log p)�1/2

�
1
t2

for some t > 0,

(118)
����

1

Tr(Q2)
e|Q2�

����. t

s
q log p

np
�e.

Since Tr(Q2)⇣m⇣ n andkQ�k2  k�k2, we have
(119)

1

Tr(Q2)
kQ�+QX(� � b�init) +QXbk22 .

1

n
kQ�k

2
2 +

1

n
kQX(� � b�init)k22 +

1

n
kQXbk22

. q log p

p
+M2k log p

n
+

1

n
kQXbk22

with probability larger than 1� (log p)�1/2.

Recall that fW 2Rp⇥p as a diagonal matrix with diagonal entries as fWl,l = kQX·,lk2/
p
n

for 1 l p. We establish that
(120)����

1

Tr(Q2)
e|Q2X(� � b�init)

����. k
1

n
e|Q2XfW�1

k1kfW (�� b�init)k1 .M2k�2+

✓
kQXbk2

p
n

◆2

,
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where the last inequality follows from (41) and (153).
Finally, we control 1

Tr(Q2)e
|
Q

2Xb, which has mean zero and variance

E
✓

1

Tr(Q2)
e|Q2Xb

◆2

. 1

n2
�2eb

|X|
Q

4Xb
�2e
n2

kX|
Q

2Xk2kbk
2
2

and hence with probability larger than 1� 1
t2

for some t > 0,

(121)
1

n
e|Q2Xb. t

p
n

1
p
n
kQXk2kbk2.

A combination of the decomposition (115) and the error bounds (116), (118), (119), (120),
(121) and (44) leads to Proposition 2.

C.2. Proof of Proposition 3. By the Wely’s inequality, we have that, for 1 lm,

(122) |�l(X)� �l(H )|= |�l(H +E)� �l(H )| �1(E).

By Theorem 5.39 and equation (5.26) in [57] and �max(⌃E) C0, with probability larger
than 1� exp(�cn) for some c > 0,

�max(E).max{
p
n,

p
p}.

Note that �l
�
1
n
XX|� = 1

n
�2
l
(X). Since �q+1(H ) = 0, we establish the proposition by

applying (122).

C.3. Proof of Lemma 1. We express the model (2) as

X1,j = 
|
j
H1,· +E1,j , X1,�j = 

|
�j

H1,· +E1,�j ,

where  j 2Rq denotes the j-th column of  j and  �j 2Rq⇥(p�1) denotes the sub-matrix of
 except for the j-th column. We define B = EE1,�jE

|
1,�j

. Since Cov(Hi,·) = Iq⇥q and the
components of Hi,· are uncorrelated with the components of Ei,·, then we have
(123)

� = [E(X1,�jX
|
1,�j

)]�1E(X1,�jX1,j) =
⇣
 |

�j
 �j +B

⌘�1 ⇣
 |

�j
 j +EE1,jE1,�j

⌘
.

We apply Woodbury matrix identity and then have

(124)
⇣
 |

�j
 �j +B

⌘�1
=B�1

�B�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �jB

�1.

We combine the above two equalities and establish the decomposition � = �E + �A with

�E =B�1EE1,jE1,�j

and

(125) �A =
⇣
 |

�j
 �j +B

⌘�1
 |

�j
 j �B�1 |

�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E .

Proof of (32). We define D =  �jB
� 1

2 2 Rq⇥(p�1) and hence the first component on the
right hand side of (125) can be expressed as

⇣
 |

�j
 �j +B

⌘�1
 |

�j
 j =B� 1

2 (D|D+ I)�1D| j .

By Woodbury matrix identity, we have

(D|D+ I)�1D| =
�
I�D|(I +DD|)�1D

�
D| =D|(I +DD|)�1
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and hence

(126)
⇣
 |

�j
 �j +B

⌘�1
 |

�j
 j =B� 1

2D|(I +DD|)�1 j .

The second component on the right hand side of (125) can be expressed as

B� 1
2D| (I +DD|)�1 �j�

E .

Together with (126), we simplify (125) as

(127) �A =B� 1
2D| (I +DD|)�1 � j + �j�

E
�
.

Under the assumption that c0  �min(⌦E) �max(⌦E)C0, we introduce the SVD for D
as D = U(D)⇤(D)V (D)|, where U(D),⇤(D) 2Rq⇥q and V (D) 2R(p�1)⇥q . Since

D| (I +DD|)�1 = V (D)⇤(D)(⇤(D)2 + I)�1U(D)|,

it follows from (127) that

(128) k�Ak2  kB� 1
2 k2 max

1lq

|�l(D)|

�2
l
(D) + 1

k j + �j�
E
k2,

where �l(D) is the l-th largest singular value of D in absolute value. By the condition
c0  �min(⌦E) �max(⌦E)C0, we have 1

C0
I�B = EE1,�jE

|
1,�j

�
1
c0
I. We further have

c0�2l ( �j) �2
l
(D)C0�2l ( �j) for 1 l q and establish the first inequality of (32). The

second inequality of (32) follows from condition (A2).
Proof of (33) We fix 1 i n and 1 j  p. Recall that

⌘i,j =Xi,j �X|
i,�j

� = |
j
Hi,· � ( |

�j
Hi,·)

|� +Ei,j �E|
i,�j

�E �E|
i,�j

�A,

⌫i,j =Ei,j �E|
i,�j

�E ,

and

�i,j = ⌘i,j � ⌫i,j = 
|
j
Hi,· � ( |

�j
Hi,·)

|� �E|
i,�j

�A.

Since Ei,· is uncorrelated with Hi,· and ⌫i,j is uncorrelated with Ei,�j and Hi,·, we have ⌫i,j
to be uncorrelated with �i,j . Hence we have

(129) Var(⌘i,j) = Var(⌫i,j) +Var(�i,j).

By the expression of � in (123), we express Var(⌘i,j) = Var(Xi,j)�Var(X|
i,�j

�) as
(130)

k jk
2
2 + (⌃E)j,j �

⇣
 |

�j
 j +EE1,jE1,�j

⌘| ⇣
 |

�j
 �j +B

⌘�1 ⇣
 |

�j
 j +EE1,jE1,�j

⌘

=k jk
2
2 + (⌃E)j,j �

⇣
 |

�j
 j +EE1,jE1,�j

⌘|
B�1

⇣
 |

�j
 j +EE1,jE1,�j

⌘

+
⇣
 |

�j
 j +EE1,jE1,�j

⌘|
B�1 |

�j

⇣
I + �jB

�1 |
�j

⌘�1
 �jB

�1
⇣
 |

�j
 j +EE1,jE1,�j

⌘
.

where the equation follows from (124). Note that

Var(⌫i,j) = (⌃E)j,j � (EE1,jE1,�j)
|B�1(EE1,jE1,�j).
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Together with (129) and (130), we obtain
(131)
Var(�i,j) = k jk

2
2 � 

|
j
 �jB

�1 |
�j
 j � 2 |

j
 �j�

E

+
⇣
 |

�j
 j +EE1,jE1,�j

⌘|
B�1 |

�j

⇣
I + �jB

�1 |
�j

⌘�1
 �jB

�1
⇣
 |

�j
 j +EE1,jE1,�j

⌘

= k jk
2
2 � 

|
j
 �jB

�1 |
�j
 j � 2 |

j
 �j�

E

+ |
j
 �jB

�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �jB

�1 |
�j
 j

+ 2 |
j
 �jB

�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E + (�E)| |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E .

Note that

k jk
2
2 = 

|
j

⇣
I + �jB

�1 |
�j

⌘�1 ⇣
I + �jB

�1 |
�j

⌘
 j .

We have

(132)
k jk

2
2 + 

|
j
 �jB

�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �jB

�1 |
�j
 j

= |
j

⇣
I + �jB

�1 |
�j

⌘�1
 j + 

|
j
 �jB

�1 |
�j
 j .

Note that

 |
j
 �jB

�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E
� |

j
 �j�

E

= |
j
 �jB

�1 |
�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E

� |
j

⇣
I + �jB

�1 |
�j

⌘⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E

=� |
j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E .

Together with (131) and (132), we establish

Var(�i,j) = 
|
j

⇣
I + �jB

�1 |
�j

⌘�1
 j + (�E)| |

�j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E

� 2 |
j

⇣
I + �jB

�1 |
�j

⌘�1
 �j�

E

= ( j � �j�
E)|

⇣
I + �jB

�1 |
�j

⌘�1
( j � �j�

E).

We establish (33) by applying condition (A2) and the following inequality

�min(I + �jB
�1 |

�j
)� 1 +C�2q( �j),

for some positive constant C > 0.

C.4. Proof of Lemma 2. The proof of this lemma is similar to Lemma 1 in terms of
controlling kbk2. We start with the exact expression of b

b=⌃�1
X
 |�= (⌃E + | )�1 |�.

By apply the Woodbury matrix inverse formula, we have

b=⌃�1
E
 | �I + ⌃�1

E
 |��1

�.
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We define DE = ⌃�1/2
E

2Rq⇥p and hence we have

b=⌃�1/2
E

D|
E
(I +DED

|
E
)�1�,

and

(133) bj = (⌦E)
|
·,j 

|(I +DED
|
E
)�1�.

Hence, we control kbk2 as

kbk2 
p

C0 max
1lq

�l(DE)

1 + �2
l
(DE)

k�k2 .
p
q(log p)1/4

�q( )
.

where the last inequality follows from the fact c0�2j ( ) �2
j
(DE)C0�2j ( ) and the condi-

tion (A2). Similarly, we apply condition (A2) and control |bj | as

|bj | k (⌦E)·,jk2
1

1 + �2q(DE)
k�k2 .

q
p
log p

�2q( )
.

It follows from Woodbury matrix inverse formula that

(134)  ⌃�1
X
 | = |⌃�1

E
 (Iq + ⌃

�1
E
 |)�1,

and hence

�2✏ � �2e = �|
�
Iq � ⌃

�1
X
 |��= �|(Iq + ⌃�1

E
 |)�1�.

We establish (35) by applying condition (A2) and the following inequality

�min(I + ⌃
�1
E
 |)� 1 +C�2q( ),

for some positive constant C > 0.

C.5. Proof of Proposition 4. Define W 2 Rp⇥p as a diagonal matrix with diagonal
entries as Wl,l = kP

(j)X·,lk2/
p
n for 1  l  p. For the vector a 2 Rp�1, we define the

weighted `1 norm kak1,w =
P

l 6=j

kP(j)
X·,lk2p
n

|al|= k(W�l,�l)ak1. Define the event

(135) A0 =

(
c

kP
(j)X·,lk2
p
n

CM for 1 l p

)
,

for some positive constants C > 0 and c > 0. On the event A0, we have

(136) ckak1  kak1,w CMkak1.

We now show that P(A0)� 1� p�c
� exp(�cn), for some positive constant c > 0. By the

construction of P(j), we have

kP
(j)X·,lk2
p
n


kX·,lk2
p
n

.

Following from the fact that Xi,l is of sub-Gaussian norm M , we apply the Corollary 5.17 in
[57] and establish that, with probability larger than 1� p�c

� exp(�cn),

(137)
kX·,lk2
p
n

.
q

Var(X1,l)(1 +M
p

log p/n).M,

where the last inequality follows from the definition of sub-Gaussian norm and M
p

log p/n

C for some positive constant C > 0. It follows from condition (A4) that

(138) min
l 6=j

kP
(j)X·,lk2
p
n

�
p
⌧⇤.
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Recall the definitions

⌘j = (⌘1,j , . . . ,⌘n,j)
|
2Rn, ⌫j = (⌫1,j , . . . ,⌫n,j)

|
2Rn and �j = ⌘j � ⌫j .

In the following, we shall choose the tuning parameter �0 such that

�0 � k
1

n
⌘|
j
(P(j))2X�j(W�j,�j)

�1
k1.

Since ⌫i,j =Ei,j � (�E)|Ei,�j is sub-Gaussian and independent of Xi,�j , we apply Proposi-
tion 5.10 in [57] and the maximum inequality to establish

(139) P
✓
k
1

n
⌫|
j
(P(j))2X�j(W�j,�j)

�1
k1 �A0�j

p
log p/n

◆
 e · p1�c(A0/C1)2

for some positive constants A0 > 0 and c > 0. We then control k 1
n
�|
j
(P(j))2X�j(W�j,�j)�1

k1
by the inequality

k
1

n
�|
j
(P(j))2X�j(W�j,�j)

�1
k1 

1
p
n
k�jk2

and the upper bound for 1
n
Ek�jk22 in (33). As a consequence, we have

P
 
k
1

n
�|
j
(P(j))2X�j(W�j,�j)

�1
k1 �

1

1 + c

s
q log p

1 + �2q( �j)

!
. (log p)�1/2

for any positive constant c > 0. Together with (139), we then choose

�0 =A0�j

r
log p

n
+

1

1+ c

s
q log p

1 + �2q( �j)
and �j � (1 + c)�0,

and have

(140) P
✓
k
1

n
⌘|
j
(P(j))2X�j(W�j,�j)

�1
k1  �0

◆
� 1�C(log p)�1/2,

for some positive constant C > 0.
By the definition of the estimator b�, we have the following basic inequality,

(141)
1

2n
kP

(j)(Xj �X�jb�)k22 + �jkb�k1,w 
1

2n
kP

(j)
�
Xj �X�j�

E
�
k
2
2 + �jk�

E
k1,w.

By decomposing Xj �X�jb� =X�j�A + ⌘j +X�j

�
�E � b�

�
, we simplify (141) as

(142)

1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 + �jkb�k1,w  �jk�

E
k1,w

�
1

n
⌘|
j
(P(j))2X�j

�
�E � b�

�
�

1

n

⇣
P

(j)X�j�
A

⌘|
P

(j)X�j

�
�E � b�

�
.

Regarding the right hand side of the above inequality, we apply (140) and establish that, with
probability larger than 1�C(log p)�1/2 for some positive constant C > 0,

����
1

n
⌘|
j
(P(j))2X�j

�
�E � b�

�����k
1

n
⌘|
j
(P(j))2X�j(W�j,�j)

�1
k1kW�j,�j(�

E
� b�)k1

�0k�
E
� b�k1,w.

Additionally, we have
����
1

n

⇣
P

(j)X�j�
A

⌘|
P

(j)X�j

�
�E � b�

����� k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2.
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Then we further simply (142) as

1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 + �jkb�k1,w  �jk�

E
k1,w + �0k�

E
� b�k1,w

+ k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2.

Let Tj denote the support of �E . By the fact that k�ETj
k1,w � kb�Tj

k1,w  k�ETj
� b�Tj

k1,w and
kb�T c

j
k1,w = k�ET c

j
� b�T c

j
k1,w, then we establish

(143)

1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 + (�j � �0)k�

E

T c
j
� b�T c

j
k1,w

 (�j + �0)k�
E

Tj
� b�Tj

k1,w + k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2.

The following analysis is based on (143) and divided into two cases depending on the domi-
nating term on the right hand side of (143).
Case 1: We consider

(�j + �0)k�
E

Tj
� b�Tj

k1,w � k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2

and then simplify (143) as

(144)
1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2+(�j � �0)k�

E

T c
j
�b�T c

j
k1,w  2 (�j + �0)k�

E

Tj
�b�Tj

k1,w.

It follows from (144) that

k�ET c
j
� b�T c

j
k1,w 

�j + �0
�j � �0

k�ETj
� b�Tj

k1,w.

By the choices of �j and �0, on the event A0, we establish

k�ET c
j
� b�T c

j
k1 CMk�ETj

� b�Tj
k1,

for some positive constant C > 0. By the restricted eigenvalue condition (22), we have

1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 �

⌧⇤
2
k�ETj

� b�Tj
k
2
2.

Together with (144) and (136), we have
⌧⇤
2
k�ETj

� b�Tj
k
2
2  2 (�j + �0)k�

E

Tj
� b�Tj

k1,w

 2CM (�j + �0)k�
E

Tj
� b�Tj

k1

 2CM
q

|Tj | (�j + �0)k�
E

Tj
� b�Tj

k2,

which leads to

k�ETj
� b�Tj

k2 .
M

⌧⇤

q
|Tj | (�j + �0) and k�ETj

� b�Tj
k1 .

M

⌧⇤
|Tj | (�j + �0) .

On the event A0, the above inequality implies that
(145)

k�ET c
j
� b�T c

j
k1 . k�ET c

j
� b�T c

j
k1,w . k�ETj

� b�Tj
k1,w .Mk�ETj

� b�Tj
k1 .

M2

⌧⇤
|Tj | (�j + �0) .
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Together with (144), (145) implies that

(146)
1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 .

M2

⌧⇤
|Tj | (�j + �0)

2 .

We apply the restricted eigenvalue condition (22) again to establish

(147) k�E � b�k2 .M
q

|Tj | (�j + �0) .

Case 2: We consider

(�j + �0)k�
E

Tj
� b�Tj

k1,w  k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2,

and then simplify (143) as
1

2n
kP

(j)X�j

�
�E � b�

�
k
2
2 + (�j � �0)k�

E

T c
j
� b�T c

j
k1,w

 k
1
p
n
P

(j)X�j�
A
k2k

1
p
n
P

(j)X�j

�
�E � b�

�
k2.

Then we derive

(148)
1
p
n
kP

(j)X�j

�
�E � b�

�
k2 . k

1
p
n
P

(j)X�j�
A
k2,

(149) k�ETj
� b�Tj

k1,w . k
1
n
P

(j)X�j�Ak22
�j + �0

and k�ET c
j
� b�T c

j
k1,w . k

1
n
P

(j)X�j�Ak22
�j � �0

.

Then, on the event A0, we have

(150) k�E � b�k2  k�E � b�k1 . k�E � b�k1,w . k
1
n
P

(j)X�j�Ak22
�j + �0

+
k
1
n
P

(j)X�j�Ak22
�j � �0

.

Finally, we establish (36) by combining (145) and (149); establish (37) by combining (147)
and (150); establish (38) by combining (146) and (148);

C.6. Proof of Proposition 5. The proof of Proposition 5 is similar to the proof of Propo-
sition 4 in Section C.5. In the following, we prove Proposition 5 and mainly highlight its
difference from the proof of Proposition 4 in Section C.5.

Define fW 2Rp⇥p as a diagonal matrix with diagonal entries as fWl,l = kQX·,lk2/
p
n for

1 l p.With a slight abuse of notation, for a 2Rp, we define kak1,w =
P

p

l=1
kQX·,lk2p

n
|al|.

Define the event

A1 =

⇢
c

kQX·,lk2
p
n

CM for 1 l p

�
,

for some positive constants C > c > 0. On the event A1, we have (136). Similar to the control
of A0 defined in (135), we can show that P(A1)� 1� p�c

� exp(�cn) for some positive
constant c > 0.

The main part of the proof is to calculate the tuning parameter � such that

�� (1 + c)k
1

n
✏|Q2XfW�1

k1

for a small positive constant c > 0. Note that ✏= e+� with �i =  |Hi,· � b|Xi,·. Since
ei is independent of Xi,·, we apply Proposition 5.10 in [57] and the maximum inequality to
establish

(151) P
✓
k
1

n
e|Q2XfW�1

k1 �A0�e
p

log p/n

◆
 e · p�c(A0/C1)2 ,
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for some positive constants c > 0 and A0 > 0. We then control the other part k 1
n
�|

Q
2XfW�1

k1
by the inequality

k
1

n
�|

Q
2XfW�1

k1 
1
p
n
k�k2

and the upper bound for 1
n
Ek�k

2
2 in (47). As a consequence, we have

(152) P
 
k
1

n
�|

Q
2XfW�1

k1 �
1

1 + c

s
q log p

1 + �2q( )

!
. (log p)�1/2,

for any positive constant c > 0. We then choose

��A�e

r
log p

n
+

s
q log p

1 + �2q( )
with A= (1+ c)A0.

We combine (151) and (152) and establish that

(153) P
✓
(1 + c0)k

1

n
✏|Q2XW�1

k1  �

◆
� 1�C(log p)�1/2

� p�c,

for some positive constant C > 0.
By the definition of b�init, we establish the basic inequality in a similar fashion to (141)

(154)
1

2n
kQ(Y �X b�init)k22 + �kb�initk1,w 

1

2n
kQ (Y �X�)k22 + �k�k1,w.

We can apply the similar argument from (141) to (150) by replacing P
(j), Xj , X�j , b�, �E ,

�A with Q, Y , X , b�init, �, b, respectively. We replace the tuning parameters �j and �0 by �
and 1

1+c0
�, respectively. Then we establish Proposition 5.

C.7. Proof of Lemma 3. We introduce the following lemma about the concentration of
quadratic forms, which is Theorem 1.1 in [52].

LEMMA 11. (Hanson-Wright inequality) Let ⇠ 2Rn be a random vector with independent
sub-Gaussian components ⇠i with zero mean and sub-Gaussian norm K . Let A be an n⇥ n
matrix. Then for every t� 0,

(155) P (|⇠|A⇠ �E⇠|A⇠|> t) 2exp


�cmin

✓
t2

K4kAk2
F

,
t

K2kAk2

◆�
.

For the high-dimensional setting where p/n ! c⇤ 2 (0,1], we have m ⇣ n for m =
min{n,p� 1}. We also note Tr[(P(j))l]⇣m for l= 2,4,8.

C.7.1. Proof of (50). We decompose 1
n
(P(j)Zj)|P(j)Xj as

(156)

1

n
(P(j)Zj)

|
P

(j)Xj =
1

n
(P(j)⌘j)

|
P

(j)⌘j +
1

n
(P(j)Zj)

|
P

(j)X�j�

�
1

n
(P(j)X�j(b� � �E))|P(j)⌘j +

1

n
(P(j)X�j�

A)|P(j)⌘j ,

where ⌘j = (⌘1,j , . . . ,⌘n,j)| 2Rn.
In the following, we control the right hand side of (156) term by term. Since ⌘j = ⌫j + �j ,

we have
1

n
(P(j)⌘j)

|
P

(j)⌘j =
1

n
⌫|
j
(P(j))2⌫j +

2

n
⌫|
j
(P(j))2�j +

1

n
�|
j
(P(j))2�j .
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By applying (155) with A= (P(j))2, then with probability larger than 1� 2exp(�ct2) for
0< t.Tr[(P(j))4]⇣ n,

(157)

�����
1

n
⌫|
j
(P(j))2⌫j �Tr[(P(j))2] ·

�2
j

n

�����. t

p
Tr[(P(j))4]

n
. t

p
m

n
.

Since
����|j (P(j))2�j

��� k�jk22, we apply the upper bound (33) for 1
n
Ek�jk22 and the Markov

inequality to establish

(158) P
✓
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2
2 &

q log p

1 + �2q( �j)

◆
 (log p)�1/2.

Hence, we have, with probability larger than 1� 2exp(�ct2)� (log p)�1/2,
����
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�2
j

n
+Ct

p
m

n

!
q log p

1 + �2q( �j)
,

for some positive constant C > 0. Combined with (157) and (158), we apply the fact that
Tr[(P(j))2]⇣ n and establish that, with probability larger than 1� 2exp(�ct2)� (log p)�1/2

for 0< t. n,

(159)
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q log p
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.

By the KKT condition of (9), we establish
����
1

n
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|
P
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n
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|
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where �j is defined in (39). We control the right hand side as
�
k�Ek1 + k�Ak1

�
�j 

p
sk�Ek2�j +

p
pk�Ak2�j .

On the event A0 defined in (135), we obtain
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����M · (
p
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p
q(log p)1/4

�q( �j)

!
.

where the last bound follows from the definition of �j in (39) and the upper bound for k�Ak2
in (32). We apply Hölder’s inequality and establish
(161)����
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n
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. M2

⌧⇤
s�2j +

kP
(j)X�j�Ak22

n

. M2

⌧⇤
s�2j +

q
p
log p

1 + �2q( �j)
·max

n
1,

p

n

o
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where the second inequality follows from (36) and (140) and the last inequality follows from
(40). Since ⌫j is independent of X�j , we show that 1

n
(P(j)X�j�A)|P(j)⌫j has mean zero

and variance
(162)
�2
j

n2
(�A)|X�j(P

(j))4X|
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o
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q
p
log p

n�2q( �j)
,

where the last inequality follows from the upper bound for k�Ak2 in (32) together with the
property (P1). Then with probability larger than 1� 1

t2
,
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Note that, with probability larger than 1� (log p)�1/2,
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where the last inequality follows from (162) and (158).
By (156), we combine the fact that Tr[(P(j))2] ·

�
2
j

n
is of a constant order and the upper

bounds (159), (160), (161), (163) and (164). We establish (50) under the conditions s�2
j
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⇢
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r
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n
(log p)3/4,

p
q(1 +M)p1/4(log p)3/8

�
.

Note that the above conditions are implied by (19) and s⌧ n/[M2 log p].

C.7.2. Proof of (51). Note that
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By applying (155) with A= (P(j))4, then with probability larger than 1� 2exp(�ct2) for
0< t.Tr[(P(j))8]⇣ n,
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.

By a similar argument as in (159), we establish that, with probability larger than 1 �

2exp(�ct2)� (log p)�1/2 for 0< t. n,
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By a similar argument as (161), we have
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In addition, 1
n
⌫|
j
(P(j))4X�j�A has mean zero and variance
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where the last inequality follows from the upper bound for k�Ak2 in (32) together with the
property (P1). Note that, with probability larger than 1� (log p)�1/2,
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where the last inequality follows from (162) and (158).
Note that
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By applying (38) and (40), we establish that, with probability larger than 1�e ·p1�c(A0/C1)2 �

exp(�cn)� (log p)�1/2 for some positive constant c > 0,
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By (165), we combine the fact that Tr[(P(j))2] ·
�

4
j

n
is of a constant order and the upper

bounds (166), (167), (168), (169) and (170). We establish (51) under the condition
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Note that the above condition is implied by (19) and s⌧ n/[M2 log p].

C.7.3. Proof of (52). Note that
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It follows from Hölder’s inequality and also the KKT condition of (9) that
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By the definition of the event A0 in (135) and the upper bound for kb�init � �k1 in (41) and
(44), with probability larger than 1 � e · p1�c(A/C1)2 � exp(�cn) � (log p)�1/2 for some
positive constant c > 0,
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Together with (51), we establish B�
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Now we control the other bias component
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where the last inequality follows from the upper bound for kb�jk2 in (34) together with the
property (P1). Hence with probability larger than 1� 1
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for some t > 0,
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Note that, with probability larger than 1� (log p)�1/2,
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where the last inequality follows from the upper bound for k�jk2 in (158), the upper bound
for kb�jk2 in (34) together with the property (P1). In addition, we note the following two
inequalities
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where the last inequality follows from the upper bound for k�Ak2 in (32), the upper bound for
kb�jk2 in (34) together with the property (P1).
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Note that
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Furthermore, we apply the upper bound (38) and establish that, with probability larger than
1� e · p1�c(A0/C1)2 � exp(�cn)� (log p)�1/2 for some positive constant c > 0,
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where the last inequality follows from the upper bound for k�Ak2 in (32), the upper bound for
kb�jk2 in (34) together with the property (P1).

By (32), (50) and (51), we have |bj |p
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p
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p
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! 0.

We now combine the decomposition (172) and the upper bounds (173), (174), (175) and
(176). Together with (50) and (51), we establish Bb
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Note that the above condition is implied by (19) and s⌧ n/[M2 log p].

C.8. Proof of Lemma 4. We first control the lower bound of �q( ) and the argument
for �q( �j) is similar. Note that �2q( ) is the smallest eigenvalue of   | =

P
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l=1 ·,l 
|
·,l.

Since  ·,l 2Rq for 1 j  p are i.i.d. sub-Gaussian random vectors, it follows from (5.26) in
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for some positive constants c,C > 0. This gives us that, with probability larger than 1� p�c,
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In the following, we control  a for a 2 Rp by noting that Ek ak22 =Tr(⌃ )kak22. Hence,
with probability larger than 1� 1
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, we have
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By taking a 2Rp as ((⌦E)1,j , . . . , (⌦E)j�1,j ,0, (⌦E)j+1,j , . . . , (⌦E)p,j), ej and (⌦E)j,·, we
establish that with probability larger than 1� 1
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The lemma follows from a combination of (177), (178), (180), (181) and (182).

C.9. Proof of Lemma 5. The proof is a generalization of that of Lemma 4 in Section
C.8. Note that �2q( ) is the smallest eigenvalue of   | =

P
p

l=1 ·,l 
|
·,l and

P
p

l=1 ·,l 
|
·,l �P

l2A ·,l 
|
·,l is a positive definite matrix. By the same argument for (177), we have

(183) �2q( )� �min(
X

l2A
 ·,l 

|
·,l)& |A|

⇣
�min(⌃ )� �max(⌃ )

p
q/|A|

⌘
.

Similarly, we have

(184) �2q( �j)& |A|

⇣
�min(⌃ )� �max⌃ )

p
q/p

⌘
.

We establish (19) by the condition (55) on the set cardinality |A|.
Similarly to (179), we establish that, with probability larger than 1� 1

t2
,

k ak22 . t2qmax{�max(⌃ ),C1}kak
2
2.

Then we can establish (180), (181) and (182) by replacing
p
�max(⌃ ) with

p
max{�max(⌃ ),C1}.

Combined with (183) and (184), we establish the lemma.

APPENDIX D: ADDITIONAL SIMULATIONS

We present here some additional simulations to the ones presented in the Section 5.1. We
use the same simulation setup where we further vary certain aspects of the data generating
distribution or we vary the tuning parameters of the proposed Doubly Debiased Lasso method.

No confounding - Toeplitz and Equicorrelation covariance. Here we explore further the
scenarios where there is no confounding at all, i.e. q = 0, similarly as in the bottom part
of Figure 7, but with different covariance structure of X = E. We fix n= 300, p= 1,000,
and take the covariance matrix ⌃E to be either a Toeplitz matrix, with (⌃E)i,j = |i�j| for
 2 [0,1), or we take it to be equicorrelation matrix where (⌃E)i,j =  2 [0,1) when i 6= j
and 1 otherwise. In both cases, as the correlation parameter  approaches 1, the singular values
become more spiked and the predictors become more correlated. The results can be seen in
Figure A1. We see that Doubly Debiased Lasso seems to have much smaller bias |B� | and thus
better coverage even in the case when q = 0, because trimming large singular values reduces
the correlations between the predictors. This difference in bias and the coverage is even
more clearly pronounced for the equicorrelation covariance structure, since for the Toeplitz
covariance structure Cor(Xi,Xj) decays as |i� j| gets bigger, whereas for equicorrelation
case it is constant and equal to .
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FIG A1. (No confounding - Toeplitz and Equicorrelation covariance) Dependence of the (scaled) absolute bias
terms |B� | and |Bb| (left), standard deviation V

1/2 (middle) and the coverage of the 95% confidence interval
(right) on the correlation parameter , while keeping p = 1,000, n = 300, q = 0 fixed. In the plots on the left,
|B� | and |Bb| are denoted by a dashed and a solid line, respectively, but Bb = 0 since we zero confounders

q = 0. Top row corresponds to the Toeplitz covariance structure (⌃E)i,j = 
|i�j|, whereas for the bottom row

we have equicorrelation covariance matrix where the off-diagonal elements equal . Blue color corresponds to the
Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also to the
Debiased Lasso estimator, but with the same b�init as our proposed method. Note that the last two methods have
almost indistinguishable V .

Non-Gaussian distribution. The Assumption (A3) in Section 4 requires that the noise term
⌫i,j = Ei,j �E|

i,�j
�E is is independent of Ei,�j . This condition will automatically hold if

Ei,· is multivariate Gaussian or Ei,· has independent entries. We now test the robustness of
Doubly Debiased Lasso method when this assumption is violated. In order to examine that,
we repeat the simulation setting displayed in Figure 3, where n= 500 and p varies from 1 to
2,000. We change the distribution as follows: Let P be some real distribution with zero mean
and unit variance. The entries of the matrix of the confounders H are generated i.i.d. from P.
Furthermore, the unconfounded part of the predictors E is generated as Z⌃1/2

E
, where Z is a

n⇥ p matrix with i.i.d. entries coming from the distribution P and ⌃E is a Toeplitz matrix
with (⌃E)i,j = |i�j| for = 0.7. Finally, the noise variables ei used for generating Y (see
Equation 2) are also generated from P. The results can be seen in Figure A2. We take P to be
the following distributions: standardized chi-squared with 1 degree of freedom, standardized
t-distribution with 5 degrees of freedom and standardized Bin(16,0.5). For comparisons of
the performance, we also include N(0,1) distribution, but one needs to keep in mind that the
obtained plot differs from the one in Figure 3 because of different correlation structure of E.
We can see that there is very little change in the performance of the proposed estimator, thus
showing that Doubly Debiased Lasso can be used for a wide range of models.

Comparison to PCA adjustment. Here we investigate how the choice of the spectral transfor-
mation can affect the performance of the Doubly Debiased Lasso estimator. We focus on the
PCA adjustment which maps first q̂ singular values to 0, for some tuning parameter q̂, while
keeping the remaining singular values unchanged. This transformation is used frequently in
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FIG A2. (Non-Gaussian distribution) Dependence of the (scaled) absolute bias terms |B� | and |Bb| (left), standard

deviation V
1/2 (middle) and the coverage of the 95% confidence interval (right) on the number of predictors

p, while keeping n= 500, q = 3 fixed. On the left side, |B� | and |Bb| are denoted by a dashed and a solid line,
respectively. We change the distribution of H,E, e in (1) as described in the text. Each row in the plot corresponds
to a different distribution P. We set ⌃E to have Toeplitz structure with parameter = 0.7. Blue color corresponds
to the Doubly Debiased Lasso, red color represents the standard Debiased Lasso and green color corresponds also
to the Debiased Lasso estimator, but with the same b�init as our proposed method. Note that the last two methods
have almost indistinguishable |Bb| and V .
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the literature because it arises by regressing out the top q̂ principal components from every
predictor.

We fix n = 300, p = 1,000, q = 5 and vary the parameter q̂. We compare the estimator
using the PCA adjustment for both P

(j) and Q with the estimator using the Trim transform
with the median rule for both P

(j) and Q. Finally, we also consider the estimator using the
Trim transform for Q and PCA adjustment for P(j), in order to separate the effects of changing
the spectral transformation for the initial estimator b�init and the overall estimator construction.
The results can be seen in Figure A3.

We see that the performance is very sensitive to the choice of the tuning parameter q̂. On
one hand, if q̂ < q, we do not manage to remove enough of the confounding bias Bb, which has
as a consequence that there is certain undercoverage of the confidence intervals. On the other
hand, if q̂ � q, the bias Bb becomes very small, but the variance of our estimator increases
slowly as q̂ grows. Also, removing too many principal components when computing b�init can
remove too much signal, resulting in the higher bias B� . Trim transform has an advantage
that we do not need to estimate the number of latent confounders q from the data, which
might be a quite difficult task. This is done by trimming many principal components, but
not removing them completely. However, this can result in a small increase of the estimator
variance compared to the PCA adjustment with the optimal tuning q̂ = q.

FIG A3. (Comparison to PCA adjustment) Dependence of the (scaled) absolute bias terms |B� | and |Bb| (left),

standard deviation V
1/2 (middle) and the coverage of the 95% confidence interval (right) on the correlation

parameter , while keeping p = 1,000, n = 300, q = 5 fixed. In the left plot, |B� | and |Bb| are denoted by a
dashed and a solid line, respectively. We vary the parameter q̂ of the PCA adjustment, which maps the first q̂ to
zero. Red color corresponds to the Doubly Debiased Lasso using Trim transform for both P(j) and Q, blue color
represents the Doubly Debiased Lasso using PCA adjustment for both P(j) and Q and green color corresponds to
the Doubly Debiased Lasso estimator using the same default b�init with Q being the median Trim transform, but
uses PCA adjustment for P(j). Note that the last two methods have almost indistinguishable V .

Weak confounding. Here, we explore how the performance of our estimator depends on the
strength of the confounding, i.e. how H affects X . In Figure 5, we have already explored
how the performance of our method depends on the number of affected predictors by each
confounder. Here we allow all predictors to be affected, but with decaying strength. This we
achieve by generating the entries of the loading matrix  as  ij ⇠N(0,1/�i(j)a), where
for each of the q rows we take a random permutation �i : {1, . . . , p} ! {1, . . . , p}, and
a � 1 is a tuning parameter describing the decay of the loading coefficients. The values
n= 300, p= 1,000 and q = 3 are kept fixed. The results can be seen in the Figure A4. We
see that when a is close to 1 and the confounding is strong that our proposed estimator is
much better that the standard Debiased Lasso estimator. On the other hand, when a is larger,
meaning that the confounding gets much weaker, the difference in performance decreases, but
Doubly Debiased Lasso still has smaller bias and thus better coverage.
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FIG A4. (Weak confounding) Dependence of the (scaled) absolute bias terms |B� | and |Bb| (left), standard

deviation V
1/2 (middle) and the coverage of the 95% confidence interval (right) on the loadings decay parameter

a, while keeping p= 1,000, n= 300, q = 3 fixed. In the left plot, |B� | and |Bb| are denoted by a dashed and a
solid line, respectively. Blue color corresponds to the Doubly Debiased Lasso, red color represents the standard
Debiased Lasso and green color corresponds also to the Debiased Lasso estimator, but with the same b�init as our
proposed method. Note that the last two methods have almost indistinguishable V .


